こちらは11/26(火)実施WEBセミナーのアーカイブ(録画)配信です。期間中何度でも視聴できます
1.はじめに
1-1. 講師自己紹介
1-2. Python環境の動作確認
1-3. 企業においてデータ活用に取り組む意義
1-4. 生成AIの紹介
2.データ基礎
2-1. データについての基礎知識
2-2. データ可視化
2-3. 実習1:データ可視化
2-4. 演習1:データ可視化
3.多変量データの取り扱い(次元削減・クラスタリング)
3-1. 多変量データとは
3-2. 基本的な前処理
3-3. 次元削減・クラスタリング ①主成分分析
3-4. 実習2:主成分分析
3-5. 演習2:主成分分析
3-6. 次元削減・クラスタリング ➁クラスタリング
3-7. 実習3:クラスタリング
3-8. 演習3:可視化/クラスタリング
4.線形回帰モデル基礎
4-1. 線形回帰モデルとは
4-2. 回帰モデルの評価指標
4-3. 実習4-1:線形回帰モデル(1)
4-4. 過学習/過剰適合
4-5. 実習4-2:線形回帰モデル(2)
4-6. 正則化
4-7. 実習4-3:線形回帰モデル(3)
5.実験計画法・ベイズ最適化
5-1. 実験計画法
5-2. ベイズ最適化
5-3. 実習5:実験計画法/ベイズ最適化(予定)
6.おわりに
6-1. データ活用プロジェクトの進め方の紹介
6-2. 参考書籍
7.補習(スキルアップにご活用ください)
7-1. 補習1: Pythonの基本文法
7-2. 補習2: Dirty-Irisの前処理